Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from $X$-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Morin, R. B., Jackson, B. G., Mueller, R. A., Lavagnino, E. R., Scanlon, W. B. \& Andrews, S. L. (1963). J. Am. Chem. Soc. 85, 1896-1897.
Morin, R. B., Jackson, E. G., Mueller, R. A., Lavagnino, E. R., Scanlon, W. B. \& Andrews, S. L. (1969). J. Am. Chem. Soc. 91, 1401-1407.

Nudelman, A., Haran, T. E. \& Shakked, Z. (1981). J. Org. Chem. 46, 3026-3029.
Palenik, G. J. (1965). Acta Cryst. 19, 47-56.
Paton, W. F., Liu, F.-T. \& Paul, I. C. (1979). J. Am. Chem. Soc. 101, 1005-1013.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Sweet, R. M. \& Dahl, L. F. (1970). J. Am. Chem. Soc. 92, 5489-5507.
Vega, R., Hernández-Montis, V. \& López-Castro, A. (1976). Acta Cryst. B32, 1363-1366.

Acta Cryst. (1983). C39, 887-888

# 1-Methyl-5-thia-1-thioniacyclooctane Iodide, $\mathrm{C}_{\mathbf{7}} \mathrm{H}_{15} \mathrm{~S}_{\mathbf{2}}^{+} \mathrm{I}^{-}$ 

By W. K. Musker, M. M. Olmstead* and M. H. Goodrow<br>Department of Chemistry, University of California, Davis, California 95616, USA

(Received 9 December 1982; accepted 16 February 1983)


#### Abstract

M_{r}=290 \cdot 23\), orthorhombic, $P 2_{1} 2_{2} 2_{1}, a=$ 6.736 (2),$\quad b=12.287$ (3), $\quad c=13.046$ (4) $\AA, \quad V=$ $1079.7(7) \AA^{3}, \quad Z=4, \quad D_{m}(298 \mathrm{~K})=1.77(1)$, $D_{x}(85 \mathrm{~K})=1.79(1) \mathrm{g} \mathrm{cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA$, $\mu=32.5 \mathrm{~cm}^{-1}, F(000)=568, T=85 \mathrm{~K}$. Final $R=$ 0.020 for 1447 unique reflections. The compound results from the reaction of 1,5 -dithiacyclooctane and excess methyl iodide in diethyl ether. The $\mathrm{S} \cdots \mathrm{S}$ non-bonded distance of 3.259 (2) $\AA$ and $\mathrm{C}-\mathrm{S} \cdots \mathrm{S}$ angle of $174.2(1)^{\circ}$ present in the cation suggest an intramolecular interaction.


Introduction. Certain sulfur-bonded derivatives of 1,5-dithiacyclooctane have been found to have relatively short transannular $\mathrm{S} \cdots \mathrm{S}$ contact distances in the range 3.121 (5)-3.271 (3) $\AA$. These are 1 -acetonyl-5-thia-1-thioniacyclooctane perchlorate (Johnson, Maier \& Paul, 1970), 1,5-dithiacyclooctane diiodine adduct (Nichols, 1981) and trans-bis(1,5dithiacyclooctane)tetrachlorotin(IV) (Olmstead, Williams \& Musker, 1982). The structure of (1) was of interest in order to determine the transannular distance in the simple $S$-methyl derivative, in which the electronic effects of the derivative group would be minimal.

(1)

* To whom correspondence should be addressed.

0108-2701/83/070887-02\$01.50

Experimental. Sticky, yellow crystals of title compound recovered directly from reaction mixture of methyl iodide and 1,5 -dithiacyclooctane, no dialkylation product formed; $D_{m}$ measured by flotation in $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4} /$ $\mathrm{CCl}_{4}$; crystal of dimensions $0.37 \times 0.42 \times 0.75 \mathrm{~mm}$ selected for data collection, several others rejected due to twinning; Syntex $P 2_{1}$ diffractometer equipped with a low-temperature apparatus; lattice parameters computed from a least-squares fit of 12 reflections with $30^{\circ}<2 \theta<35^{\circ}$; systematic absences for $h 00, h=$ $2 n+1 ; \quad 0 k 0, \quad k=2 n+1 ; \quad 00 l, \quad l=2 n+1$ indicated space group $P 2,2,2$ (No. 19); an empirical absorption correction assuming an ellipsoid applied with range of absorption correction factors $6 \cdot 8-7 \cdot 8$; data collected to $2 \theta_{\text {max }}=55^{\circ}$ in positive octant with maximum indices $h$, $k, l$ of $9,16,17$ respectively; two check reflections showed less than a $2 \%$ average fluctuation during data collection; total of 1447 unique reflections measured of which nine having $F<3 \sigma(F)$ rejected; structure solved by Patterson and Fourier techniques, refined by full-matrix least squares (based on $F$ ) using $w=$ $1 /\left[\sigma^{2}(F)+0.00008 F^{2}\right]$; methyl H atoms located on a difference map and refined as a rigid body with the bonded C atom, allowing $U_{\text {iso }}$ to vary; remaining H atoms placed at computed positions and assigned $U_{\text {iso }}=1.2 U_{\text {eq }}$ (bonded C), refined using a riding model in which they contribute to the derivatives used in the least-squares procedure; non-H atoms assigned anisotropic thermal parameters, bringing total number of parameters to 94 ; in final cycle of refinement, maximum shift/e.s.d. -0.379 for overall scale and average shift/e.s.d. 0.037; final difference electron density map showed a maximum and minimum peak height of 0.39 and $-0.80 \mathrm{e} \AA^{-3}$ respectively in vicinity of the I atom; © 1983 International Union of Crystallography
$R=0.020, R_{w}=0.021, S=1.81$; computer programs were those of SHELXTL (Sheldrick, 1978); scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974).

Discussion. Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1.*

The results of the crystal-structure determination show the presence of cationic $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~S}_{2}{ }^{+}$and $\mathrm{I}^{-}$ions in the crystal. A drawing of the cation is given in Fig. 1. The 1,5 -dithiacyclooctane ring conformation is chairchair. Torsion angles, together with bond distances and angles, are listed in Table 2. The transannular $S(1) \cdots S(2)$ distance of 3.259 (2) $\AA$ and $\mathrm{C}(1)-\mathrm{S}(1) \cdots \mathrm{S}(2)$ angle of $174.2(1)^{\circ}$ may be indicative of a long-range interaction between S atoms (Olmstead et al., 1982).

Non-bonded interactions between cation and anion are presented in Fig. 2. The $\mathrm{I}^{-}$ion has non-bonded contacts to two $\mathrm{S}(1)$ atoms of 3.748 (1) and 3.857 (1) $\AA$, which form an angle of $98.1^{\circ}$ with the $\mathrm{I}^{-}$ ion. Each $\mathbf{S}(1)$ atom, in turn, interacts with two $\mathrm{I}^{-}$ions at these distances; one approaches along the line of the $\mathrm{S}(1)-\mathrm{C}(7)$ bond at an angle of $175.0(1)^{\circ}$ and the other along the line of the $S(1)-C(2)$ bond at an angle of 175.4 (1) ${ }^{\circ}$. These contacts are another example of the generalization (Rosenfield, Parthasarathy \& Dunitz, 1977) that '.. nucleophiles tend to approach along the extension of one of the covalent bonds to S.' We also note that if the three bonded and the three non-bonded atoms surrounding $S(1)$ are taken into account, there is a roughly octahedral arrangement of atoms around S(1).

We wish to thank the National Institutes of Health for support of this work.
*Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British library Lending Division as Supplementary Publication No. SUP 38419 ( 12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for the non- H atoms with e.s.d.'s in parentheses
I
$\mathrm{S}(1)$
$\mathrm{S}(2)$
$\mathrm{C}(1)$
$\mathrm{C}(2)$
$\mathrm{C}(1)$
$\mathrm{C}(4)$
$\mathrm{C}(5)$
$\mathrm{C}(6)$
$\mathrm{C}(7)$

| $x$ | $y$ | $z$ |
| :---: | :---: | :---: |
| 170 (1) | 597 (1) | 546 (1) |
| 6939 (2) | 1754 (1) | 8361 (1) |
| 9999 (2) | 2525 (1) | 6568 (1) |
| 5113 (8) | 1265 (4) | 9247 (3) |
| 7839 (7) | 431 (3) | 7935 (4) |
| 9889 (8) | 436 (4) | 7419 (4) |
| 10038 (9) | 1045 (3) | 6408 (3) |
| 7691 (7) | 2929 (4) | 5945 (3) |
| 6014 (7) | 3148 (4) | 6697 (4) |
| 5288 (8) | 2191 (4) | 7319 (3) |

$U_{\text {eq }}{ }^{*}$
16 (1)
14 (1)
18 (1)
19 (1)
18 (1)
20 (1)
20 (1)
20 (1)
18 (1)
18 (1)

Table 2. Interatomic distances $(\AA)$, angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

| $\mathrm{S}(1)-\mathrm{C}(1)$ | 1.791 (5) | $\mathrm{S}(1)-\mathrm{C}(2)$ | 1.822 (4) |
| :---: | :---: | :---: | :---: |
| S(1)-C(7) | 1.837 (5) | S(2)-C(4) | 1.830 (4) |
| S(2)-C(5) | 1.824 (5) | $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.536 (7) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.520 (6) | $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.520 (7) |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.510 (6) | $\mathrm{S}(1) \cdots \mathrm{S}(2)$ | 3.259 (2) |
| $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2)$ | 97.2 (2) | $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(7)$ | 99.2 (2) |
| $\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(7)$ | 103.7 (2) | $\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{C}(5)$ | 103.4 (2) |
| $\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 115.4 (3) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 116.2 (4) |
| S(2)-C(4)-C(3) | 112.9 (3) | S(2)-C(5)-C(6) | 113.2 (3) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | 116.7 (4) | $\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(6)$ | 115.4 (3) |
| $\mathrm{C}(1)-\mathrm{S}(1) \cdots \mathrm{S}(2)$ | 174.2 (1) |  |  |
| $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | -161.0 (3) | $\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{C}(5)-\mathrm{C}(6)$ | 100.9 (4) |
| $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(6)$ | 148.7 (3) | $\mathrm{S}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | -64.5 (5) |
| $\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | -65.1(5) | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(1)$ | 74.4 (5) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{S}(2)$ | 73.8 (5) | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(1)-\mathrm{C}(2)$ | -111.5 (4) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{C}(5)$ | -114.7 (4) | $\mathrm{C}(7)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 97.7 (4) |



Fig. 1. A perspective drawing of $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~S}_{2}{ }^{+}$showing the atomlabeling scheme and anisotropic thermal ellipsoids at the $50 \%$ probability level.


Fig. 2. Non-bonded interactions between $\mathrm{I}^{-}$and $\mathrm{S}(1)$ (distances in A). Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y,-z$; (iii) $x-1, y, z-1$.

## References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, S. M., Maier, C. A. \& Paul, I. C. (1970). J. Chem. Soc. B, pp. 1603-1608.
Nichols, B. G. (1981). PhD Dissertation, Univ. of California, Davis.
Olmstead, M. M., Williams, K. A. \& Musker, W. K. (1982). J. Am. Chem. Soc. 104, 5567-5568.
Rosenfield, R. E. Jr, Parthasarathy, R. \& Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860-4862.

Sheldrick, G. M. (1978). SHELXTL, version 3 - July 1981. An integrated system for solving, refining and displaying crystal structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany.

